If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16t^2+5t-10=0
a = 16; b = 5; c = -10;
Δ = b2-4ac
Δ = 52-4·16·(-10)
Δ = 665
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{665}}{2*16}=\frac{-5-\sqrt{665}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{665}}{2*16}=\frac{-5+\sqrt{665}}{32} $
| 2=(1.03)^4n | | 2=(1.03*4n | | 8k−10=10+10k | | 2=(1.03)*4n | | 11=11/3x | | 5x+10+2x-20=180 | | 3q+8=15 | | 1/10000x=1 | | 2x+1.3x=576 | | (3x+5)^.5=4 | | √x4=25 | | 5y^2(y^2+4)=28-11y^2 | | (5x-7)^3=7x+1 | | 42=-6(5-r) | | 3920-x=9x/40 | | (2x-1)/5=9 | | 50x=40x+4000 | | -8(5r+6)=232 | | -91=7(-4-4m)+7m | | 0=1+2(3x)-9x | | -300=-6(1-7m) | | 119=7(8r-7) | | 9x-2(3x)+1=0 | | 157=4(7x+5)-3 | | -5v+6v=8 | | -6k+1+2=9 | | -14=-2m-6+6m | | 2=-3r+4r | | 1=1-5v-5v | | √x+17=61.4 | | 9x+45=2x+3 | | -7v-5v=-12 |